

Year 12 Chemistry Equilibrium Test 2022

Time allow	ed:		45 minutes
Name: Teachers:	MXC	BLR	NMOB
	Mark =		/45

SECTION 1 MULTIPLE CHOICE (10 marks)

Questions 1 and 2 refer to the following information

Oxides of nitrogen are formed in air at the high temperatures generated in lightning flashes according to the equation

$$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$$
 $K_1 = 5 \times 10^{-3} \text{ at } 3000^{\circ}\text{C}$

1. At 3000°C, the equilibrium constant K_2 for the reaction

$$2 \text{ NO(g)} \qquad \rightleftarrows \qquad \text{N}_2 \text{ (g)} + \text{O}_2 \text{(g)}$$

would be:

- (a) 4×10^4
- (b) 2×10^2
- (c) 1×10^{-2}
- (d) 5×10^{-3}
- 2. A higher temperature in the lightning flash increases the rate of the reaction but does **not** increase the
 - (a) number of collisions
 - (b) fraction of reacting particles which possess energies greater than the activation energy
 - (c) the average velocity of the reacting particles
 - (d) activation energy
- 3. A change is made on a system at equilibrium and it is observed that the equilibrium position moves to the right (products side). Which of the following is consistent with this observation?
 - (a) $2 \text{ Cl}_2(g) + 7 \text{ O}_2(g) \rightleftarrows 2 \text{ Cl}_2\text{O}_7(g)$; the pressure is increased by adding Ne to the vessel at constant volume
 - (b) $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$; the pressure is decreased by removal of some of the HI(g)
 - (c) $2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$; $\Delta H = -484 \text{ kJ}$; the temperature is increased.
 - (d) $I_2(s) \rightleftharpoons I_2(g)$; solid iodine is added.

4. Under certain conditions, cyclohexane, C₆H₁₂, can react to form benzene, C₆H₆ and hydrogen according to the equation

$$C_6H_{12}(g)$$
 \rightleftarrows $C_6H_6(g) + 3 H_2(g)$ $\Delta H = +206 \text{ kJmol}^{-1}$

If the volume of the reaction vessel was increased at constant temperature, then:

- (a) the equilibrium concentration of cyclohexane would decrease but its mass would increase.
- (b) the equilibrium concentration of cyclohexane would be unchanged but its mass would decrease.
- (c) the equilibrium concentration of benzene would decrease but its mass would increase.
- (d) the equilibrium concentration of benzene would increase and its mass would increase.
- 5. For the reaction

$$Fe^{2+}(aq) + Ag^{+}(aq) \Rightarrow Fe^{3+}(aq) + Ag(s) \Delta H = -65.7 \text{ kJ mol}^{-1}$$

Which of the following increases the value of the equilibrium constant, K?

- (a) adding silver ions to the system.
- (b) removing water from the system.
- (c) decreasing the temperature.
- (d) increasing the temperature.
- 6. Cobalt (II) salts generally appear pink due to the presence of $Co(H_2O)_6^{2+}$ (aq) but the tetrahedral complex $CoCl_4^{2-}$ (aq) is blue in colour. For the reaction:

$$Co(H_2O)_6^{2+}(aq) + 4 Cl^{-}(aq) \rightleftharpoons CoCl_4^{2-}(aq) + 6 H_2O(l)$$
 $\Delta H = + 12.4 \text{ kJ mol}^{-1}$

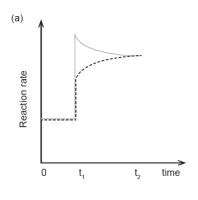
Which of the following would cause the reaction mixture to take on a stronger BLUE colour?

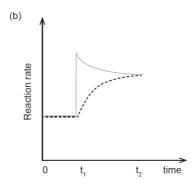
- I. adding a few drops of water
- II. adding concentrated hydrochloric acid
- III. adding silver nitrate solution
- IV. heating
- V cooling
- (a) I, II and IV
- (b) III and IV
- (c) II and IV
- (d) II and V

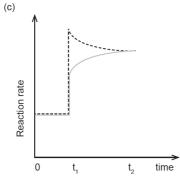
7. Methanol is prepared commercially by reacting CO with H₂ at 400°C in the presence of a catalyst.

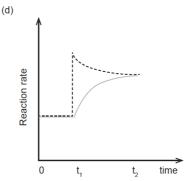
$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\triangle H = -92 \text{ kJ mol}^{-1}$

If a mixure of CO, H₂ and CH₃OH were at equilibrium in a sealed container and the temperature of the gases were raised, the:


- (a) total pressure of the gas mixture would decrease.
- (b) rates of forward and reverse reactions would remain constant.
- (c) total number of gas molecules would increase.
- (d) the value of K would increase.
- 8. Consider the following equilibrium.


$$SO_3(g) \rightleftharpoons SO_2(g) + O_2(g)$$
 $\Delta H = + 196 \text{ kJmol}^{-1}$


The system is initially at equilibrium. At time \mathbf{t}_1 , the temperature of the system was increased. Which of the following best represents the changes in the forward and reverse reaction rates until equilibrium is re-established at time, \mathbf{t}_2 ?


The forward reaction rate is represented by ———

The reverse reaction rate is represented by ---

9. In which one or more of the following chemical equilibrium systems will the position of equilibrium be shifted to the left by an increase in pressure?

I
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

II 2 HI(g)
$$\rightleftharpoons$$
 H₂(g) + I₂(g)

III
$$C_3H_8(g) + 5 O_2(g) \rightleftharpoons 3 CO_2(g) + 4 H_2O(g)$$

IV
$$Cl_2(g) + 3 F_2(g) \rightleftharpoons 2 CIF_3(g)$$

- (a) I only
- (b) I and II only
- (c) I and III only
- (d) IV only
- 10. Hydrogen sulfide is used as a source of sulfide ions in qualitative analysis. The equations for the production of sulfide ions are:

$$H_2S(aq)$$
 \rightleftarrows $H^+(aq) + HS^-(aq)$
 $HS^-(aq)$ \rightleftarrows $H^+(aq) + S^2^-(aq)$

When acid is added to the equilibrium mixture above, the sulfide ion concentration will:

- (a) increase.
- (b) remain constant.
- (c) decrease.
- (d) be always equal the hydrogen ion concentration.

(3 marks)

SECTION 2			WRITTE	N AN	ISWERS		(35 Marks)
Question 11							(6 marks)
The industrial	production of	ethanoi	c acid is b	y the	Monsanto proces	ss, which is a	as follows;
	CH₃OH(g)	+	CO(g)	⇄	CH₃COOH(g)	ΔH = -	-ve
have been co		oosing t			l 3000 kPa. Outlii imum conditions.		
Temperature							
							(3 marks)
Pressure							,
11033410							
	····						
							

Question 12 (15 marks)

Consider the following equilibrium;

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightleftharpoons 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g) \quad \Delta H = -908 \text{ kJ}$$

(a) For each of the following changes, predict the effect on the value of the equilibrium constant (K), the rate of the forward reaction, the concentration of oxygen (O₂) and the mass of nitrous oxide (NO) once equilibrium has been re-established. Identify the changes as **increase**, **decrease** or **no change**.

Change	К	rate of forward reaction	[O ₂]	mass of NO
Increase temperature				
Remove some NH ₃				
Add a catalyst				
Decrease the volume of the container				
Add neon gas at constant volume				(40

(10 marks)

(b)	Use collision theory to explain the effect (if any) on the concentration of O_2 when the temperature of the system is increased.
	(5 marks)

Question 13 (14 marks)

Equilibrium is established between the yellow chromate ion (CrO_4^{2-}) and the orange dichromate ion $(Cr_2O_7^{2-})$ according to the following equation.

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftarrows Cr_2O_7^{2-}(aq) + H_2O(I)$$

Yellow Orange

Assume that an orange equilibrium mixture contains an excess of dichromate ions and a yellow mixture contains an excess of chromate ions.

- (b) Consider an equilibrium mixture of these ions.
 - At time t₁ several drops of a concentrated solution of sodium hydroxide (NaOH) were added.
 - At time t₂ equilibrium is re-established.
 - At time t₃ Na₂Cr₂O₇(s) was added.
 - At time t₄ equilibrium is re-established.

Sketch a qualitative graph demonstrating the change in the rates of the forward and reverse reactions during these events until equilibrium is re-established at t_4 . From t=0 to $t=t_1$ the rates of the forward and reverse reactions are equal.

•	Forward	_			
F	Reverse	-			
-					
0	t ₁	t ₂	t ₃	t ₄	time
					(4 marks)

(3 marks)

Question 13 continued

Water is now added to an ed	quilibrium mixture of	chromate and	dichromate i	ons which v	was
orange in colour so that its v	olume is doubled.				

		(2 marks)
` '	On the axes below show the rons in equilibrium before the	relative concentrations of the chromate and dichromate water is added at $t_{\rm 1.}$
		the concentration of the chromate and dichromate ions at t_1 until it comes to equilibrium at t_2 .
Conc	chromate	dichromate
	t ₁	t ₂ time
	t ₁	t ₂ time (4 mark
had	student wanted to prepare a	
had	student wanted to prepare a s d solid potassium chromate ((4 mark solution of potassium dichromate ($K_2Cr_2O_7$) but only
had	student wanted to prepare a s d solid potassium chromate ((4 mark solution of potassium dichromate ($K_2Cr_2O_7$) but only

End of Test